Instrumentation in Fluorescence Microscopy

Hongtao Chen, Ph.D.
Microscopy in Biomedical Research

- Microscopy is the technical field of using microscopes to view samples and objects that cannot be seen with the unaided eye.
Imaging Techniques: Optical Microscopy

• **Widefield microscopy**
 - Bright Field
 - Fluorescent
 - More...

• **Laser Scanning microscopy**
 - Confocal
 - Multiphoton

http://micro.magnet.fsu.edu/primer/techniques/fluorescence/anatomy/fluoromicroanatomy.html
Basic Principles

Principle

Typical infinity color-corrected optical system

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

http://en.wikipedia.org/wiki/Optical_microscope
http://zeiss-campus.magnet.fsu.edu/
http://www.olympusmicro.com/
Typical Microscope

[Image: Reflecting Light Microscope Tube Length]

[Image: 60x Plan Apochromat Objective]

http://www.olympusmicro.com/primer/anatomy/specifications.html
Fluorescence Microscopy in Life Sciences

Fluorescence Microscopes offer:

Spatial resolution: ~0.2 µm
Different probes for multi-color imaging

J. Lichtman etc, Nature Methods, 2005, 2:910-919
http://rsb.info.nih.gov/ij/images/
http://zeiss-campus.magnet.fsu.edu
From Widefield to Confocal Microscope

Widefield fluorescence microscopy

Confocal fluorescence microscopy

http://www.olympusconfocal.com/theory/confocalintro.html
Confocal Fluorescence Microscope

http://www.olympusconfocal.com/theory/confocalintro.html
Types of Confocal Microscopes

• Laser scanning confocal microscopes
 – Single beam:
 Stage scanning or Laser scanning
 – Advantages/disadvantages:
 • Good image quality and
 • High resolution
 • Slow frame rate (< 3fps)

• Spinning-disk confocal microscopes
 – Multi-beam
 – Advantages/disadvantages:
 • Video rate imaging
 • Low resolution

http://www.olympusconfocal.com/theory/confocalscanningsystems.html

http://www.smt.zeiss.com/
2-photon Excitation Fluorescence Microscopy

3-Photon excitation occurs in the same way

http://www.nature.com/nrg/journal/v4/n8/box/nrg1126_BX4.html
http://research.stowers-institute.org/wiw/external/Technology/Microscopy/
Charactersitics:
1. The signal beam is stationary.
2. Loss of signal.
Confocal Microscopes in LFD

<table>
<thead>
<tr>
<th>One-photon laser scanning</th>
<th>One/two-photon</th>
<th>Model</th>
<th>Microscope</th>
<th>Laser</th>
<th>Extra</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olympus</td>
<td>Zeiss</td>
<td>Zeiss</td>
<td>Olympus</td>
<td>Olympus</td>
<td>FV1000 (Keck)</td>
<td>FLIMBox Tracking system</td>
</tr>
<tr>
<td>Fluoview FV1000 (LFD)</td>
<td>LSM 510</td>
<td>LSM 710</td>
<td>Fluoview FV1000 (Keck)</td>
<td>Argon Ion, 405/559/635nm, Ti:Sapphs with Deepsea</td>
<td>Argon, HeNe, Diode laser, Ti:Sapphs with Deepsea</td>
<td>High sensitivity, 3D tracking</td>
</tr>
<tr>
<td>IX81</td>
<td>Axiovert 200M</td>
<td>Axio Observer.Z1</td>
<td>IX81</td>
<td>Argon Ion, HeNe, Ti:Sapphs</td>
<td>Argon, HeNe, Ti:Sapphs with Deepsea</td>
<td>Fastest Z scan, 3D Piezo scanning</td>
</tr>
<tr>
<td>Microscope IX81</td>
<td>Diode lasers</td>
<td></td>
<td>Extra FLIMBox Tracking system</td>
<td></td>
<td></td>
<td>High sensitive, Spectral detectors</td>
</tr>
<tr>
<td>Laser</td>
<td>White laser</td>
<td></td>
<td>Extra FLIMBox Tracking system</td>
<td></td>
<td></td>
<td>High Sensitivity, 3D tracking</td>
</tr>
<tr>
<td>Argon Ion</td>
<td>HeNe Ti:Sapphs</td>
<td></td>
<td>Extra FLIMBox Tracking system</td>
<td></td>
<td></td>
<td>For animal study, 3D tracking</td>
</tr>
<tr>
<td>HeNe Diode laser</td>
<td></td>
<td></td>
<td>Extra FLIMBox Tracking system</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detailed instrument components: http://www.lfd.uci.edu/service/resources/microscopes/
Non-Descan configuration of TPEF Microscope

Characteristics:
1. Good collection efficiency.
2. Large area detectors are needed.
Two-photon microscopes in LFD

<table>
<thead>
<tr>
<th>Two-Photon Scanning</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M5</th>
<th>Olympus upright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscope</td>
<td>Zeiss Axiovert 35</td>
<td>Zeiss Axiovert 135TV</td>
<td>Zeiss AxiovertS100TV</td>
<td>Olympus IX70</td>
<td>Olympus</td>
</tr>
<tr>
<td>Laser</td>
<td>Mira900 MaiTai HP</td>
<td>MaiTai HP</td>
<td>MaiTai HP</td>
<td>Chameleon-Ultra II</td>
<td>MaiTai HP with deepsea</td>
</tr>
<tr>
<td>Scanner</td>
<td>Mirror scanner 6350 (Cam. Tech.)</td>
<td>Mirror scanner 6220 (Cam. Tech.)</td>
<td>Mirror scanner 6350 (Cam. Tech.)</td>
<td>Mirror scanner 6350 (Cam. Tech.)</td>
<td>Mirror scanner 6220 (Cam. Tech.)</td>
</tr>
<tr>
<td>Software & Data acquisition</td>
<td>SimFCS FLIMBox ISS-FCS</td>
<td>SimFCS FLIMBox ISS-FCS</td>
<td>SimFCS FLIMBox BH-SPC830</td>
<td>SimFCS ISS-FCS</td>
<td>SimFCS FLIMBox ISS-FCS</td>
</tr>
<tr>
<td>Targets:</td>
<td>Non-descan mode, FLIM and more.</td>
<td>Non-descan mode, FLIM & on tracking, 3D tracking and more.</td>
<td>Non-descan mode, FLIM, for everything</td>
<td>Non-descan mode</td>
<td>Non-descan mode, Larger area detector for deep tissue</td>
</tr>
</tbody>
</table>

Detailed instrument components: http://www.lfd.uci.edu/service/resources/microscopes/
Components in a Laser Scanning Microscope

Laser:
- Ti:Sapphs
- Other lasers

Scanner:
- Mirror laser scanner
- Pizo stage scanner

Detector:
- PMT/APD
- CCD/ICCD/EMCCD for one photon

Others:
- Optics
- Electronics
- ...
Wavelengths of commercially available lasers

http://en.wikipedia.org/wiki/Laser
Multiphoton Transition Necessitates High Excitation Intensity at the Focus

Photon pairs absorbed per laser pulse

\[n_a \approx \frac{d}{\tau} \left(\frac{p\pi A^2}{fhc\lambda} \right)^2 \]

- \(p \): Average power
- \(\tau \): Pulse duration
- \(f \): Laser repetition frequency
- \(A \): Numerical aperture
- \(\lambda \): Laser wavelength
- \(d \): Two photon absorption cross-section
 \((10^{-50} \text{ cm}^4 \text{ sec photon}^{-1} \text{ molecule}^{-1}) \)

Peak power:

\[P_{\text{peak}} = \frac{P}{\tau f} \]

http://www.microscopyu.com/articles/fluorescence/multiphoton/multiphotonintro.html
Light Sources: Titanium Sapphire Lasers

Pulse duration of ~100 fs with 80 MHz repetition rate
Wavelength range 680-1080nm
Average power is about 700mW-3.7W @790nm, ~310 kW peak-power

Enough power to saturate absorption in a diffraction limited spot

Coherent Chameleon-Ultra II Spectra-Physics Mai Tai HP

Major TPEF Laser sources at LFD:
1x Chameleon-Ultra II
6x MaiTai (Two equipped with Deepsee)
1x Tsunami
Tuning Curves of Ti:Sapphs Lasers

Chameleons-Ultra II tuning range: 680 – 1080 nm
Mai Tai HP tuning range: 690 – 1040 nm
Scanning Unit: Mirror Scanner

• Laser scanning is most widely used.
 – Fast
 – Sample is stationary

• Methods:
 – The galvanometric scanner
 – The polygonal scanner
 – The acousto-optical deflector

http://www.celanphy.science.ru.nl/Bruce_web/scanning_microscopy.htm
Configuration of Light Path

• Telecentric planes:
 – SP and FAP

• Scanning lens:
 – A “θ-ε” lens.
 The displacement of its focal point from axis is proportional to the incident angle

• Requirement:
 – The pivot points of x-scan and y-scan are at the eyepoint of the scan lens and conjugate with the BFP.
Configuration of Light Path

• Single scanning mirror:

• Two scanning mirrors:

http://www.olympusconfocal.com/theory/confocalscanningsystems.html
Example of Mirror scanners

Cambridge technology mirror scanner:
Moving coil closed loop galvanometer based optical scanner with capacitor position detector, 6033 servo controller

Model 6350

- Angular Excursion: 40°
- Small angle step response time: 1.5 ms
- Position detector linearity: min. 99.9 % over 40°

Model 6220

Angular Excursion: 40°
- Small angle step response time: 0.2 ms
- Position detector linearity: min. 99.9 % over 20°; 99.5% typical over 40°.

http://www.camtech.com/
Scanning Unit: Stage Scanner

• Sample scanning
 – Piezo stage scanners.
 – Sample movement, beam stationary.

• Specifications:
 – Nanometer resolution
 – May cause the change of samples.
 – High imaging speed is difficult to achieve..

http://www.celanphy.science.ru.nl/Bruce.web/scanning.microscopy.htm
Piezo Stages Scanner in LFD

XY-stages:

PI xy piezo nanopositioning stage
P-730.20 with PI piezo servo controller
- 0 to 10 V: 50 µm
- Resolution: 0.1 nm

MCL piezoelectric xyz-nanopositioner
Nano-PDQ MCLS 01338 with Nano-Drive 85 controller
- Travel @ 0 to 10 V: 50 µm
- Resolution: 0.1 nm

MCL piezoelectric z-nanopositioner
Nano-Z50HS with Nano-Drive 85 controller
- Travel @ -10 to 10 V: 50 µm
- Resolution: 0.1 nm
Which Scanning Method?

• **Mirror scanners:**
 – Fast scanning. Large area can be scanned.
 – Immobile sample.
 – XY plane only

• **Piezo stage scanners:**
 – Slow scanning. Small area.
 – No change in the optics.
 – Nanometer resolution.
 – 3D capability

• **LFD 3-D particle tracking**
 – Combination of the xy Mirror scanner and fast Piezo Z- positioner
Detectors for Laser Scanning Microscopes

• Point detectors (single channel)
 – PMT: Photomultiplier tubes
 – APD: Avalanche photodiodes

http://www.prairie-technologies.com/resources/techniques/2photon.html
Photomultipliers

Elements:
- Photocathode: a negatively charged electrode for electron release at photon abs.
- Dynodes: Electrodes for electron multiplication (up to 18)
- Anode: collection electrode
- Very fast response time (ns), bandwidth 1-1.5 GHz.
- Extremely high sensitivity
- Very high S/N.

PMT Gain and Spectral Responses

• **Current amplification (gain) estimation:** \[\text{Gain} = E^n \]
 - \(E \) secondary emission ratio for the dynodes
 - \(n \) number of dynode stages
 - electron gains of **10 million** can be achieved.

• **Photocathode composition determines:**
 - spectral response
 - quantum efficiency: 30-40 %.
 - overall uniformity of the photomultiplier sensitivity
 - dark current

http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/photomultipliers.html
Avalanche Photodiode (APD)

APDs: the semiconductor (silicon-based) analog to PMTs.

It contains: a positively doped “p region”, a negatively doped “n region”, and an area of neutral charge “depletion region”.

These diodes provide gain by the generation of electron-hole pairs from an energetic electron that creates an "avalanche" of electrons in the substrate.

http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/avalanche.html
Contd. : Avalanche Photodiode (APD)

- When a reverse bias (voltage) applied, a current will flow in proportion to the number of photons incident upon the junction.
 - Gain: 500-1000
 - Depletion layer is thin
 - Very high reverse-bias voltages, increases energy of the created electrons, multiple collisions avalanche of electrons (electron multiplication)

- Advantages:
 - High quantum efficiency (90 %)
 - Broad spectral range
 - Uniform detection surface
 - Require low currents
 - Immune to magnetic fields
Hybrid Detector

- A large part of the gain within a single step -> a narrow amplitude distribution.
- Low transit time spread (120ps).
- Count efficiency.
- Extremely low afterpulsing.
Comparison of Selected Photodetectors

- **Low sensitivity, fast rise time (0.78 ns)** → Photon counting for FLIM
 - R7400U-04 Hamamatsu QE 18.6%, 2 ns

- **High sensitivity, slow** → Low light level imaging
 - APD SPCM-AQR Perkin-Elmer QE 65%, 35 ns

- **QE low, gain high (10⁷)**, → analog detection
 - R928 Hamamatsu QE 25.4%, 10 ns

- **QE high, good timing** → Photon counting
 - H7422P-40 Hamamatsu QE 40%, 2 ns
 - HPM-100-40 QE 45%, 850 ps
MODE OF PMT OPERATION: ANALOG OR PHOTON COUNTING?

HIGHER LIGHT LEVEL (Multiple Photoelectron State)

1. Arrival of photons
2. Photoelectron emission
3. Signal output (pulses)
4. Signal output (pulse overlapped)

LOWER LIGHT LEVEL (Single Photoelectron State)

5. Arrival of photons
6. Photoelectron emission
7. Signal output (discrete pulses)
The Level of Incident Illumination

Analog mode:
- At increasing light intensities, the interval between the photons arriving at the PMT becomes so short that they overlap to produce a continuous waveform.
- easy to sample with a conventional analog-to-digital converter.
- broad dynamical range (adjustable with dynode voltage).

Digital mode:
- At bandwidths below 100 MHz(10 ns), the signal can be detected as a series of pulses on the anode and processed digitally.
- Signal eventually needs pre-amplification and discriminator electronics.
- At low light intensities the low level noise of the signal reduces image contrast and increases background intensity (c). Using of discriminator increases image contrast (d).
Imaging Detectors (Multi-channel) for Widefield Microscope

- **CCD/ICCD/EMCCD**
 - CCD: charge-coupled device
 - ICCD: Intensified CCD
 - EMCCD: electron-multiplying CCD

Commonly used to acquire wide-field, spinning-disk confocal, and total internal reflection fluorescence (TIRF) microscopy images.
A dense matrix of photodiodes incorporating charge storage regions

- A pixel (a silicon diode photosensor) is coupled to a charge storage region. The stored charge is sequentially transferred through the parallel registers to a linear serial register and then to an output node adjacent to the read-out amplifier (Only one amplifier at the corner of the entire array).

http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/ccdanatomy.html
http://micro.magnet.fsu.edu/primer/digitalimaging/digitalimagingdetectors.html
Electron Multiplying CCD (EMCCD)
Intensified CCD (ICCD)

Fast gating: 3~5 ns

Required for most time-resolved fluorescence microscopy applications

http://www.lambert-instruments.com
ICCD system for FLIM measurement
Multi-Frequency Widefield FLIM at LFD
CCD/ICCD/EMCCD

CCD:
- Very low signal levels typically fall beneath the read noise floor of the sensor

ICCD:
- Faster Gating (ns). For FLIM.

EMCCD:
- Rapid frame-rate capture at extremely low light levels
- Quantum efficiency >90%
- Read noise < 1 electrons rms

http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/emccds.html
BEHIND THE TABLE: ELECTRONICS AND OPTICS

http://zeiss-campus.magnet.fsu.edu
http://www.ISS.com
Control of laser Scanning

3-axis card

IOTech IO card

Drivers
Detection Components

Photon-Counting Unit
- IOTech IO card
- FCS card
- FLIM card
- TCSPC card

Detector
- Pre-amplifier
- Discriminator

“Failure of the constant fraction discriminator”, Kirstin Luery, 2003
Acknowledgements

• Dr. Enrico Gratton
• Members in LFD