Lecture 3: Introduction to scanning FCS

Margaux Bouzin

12th LFD Workshop in Advanced Fluorescence Imaging and Dynamics
October 23-27, 2017
Laboratory for Fluorescence Dynamics
University of California, Irvine
The principle of FCS and scanning FCS

Introduction to number fluctuations

Measuring single molecules passing through the volume of illumination

Scanning FCS provides spatiotemporal correlations
• Introduction

• The principle of scanning FCS

• Data acquisition, processing and analysis

• Scanning FCS in cells

• Example
When we first applied FCS to cells, a series of problems arose:

- The cell could have moved, so that the volume of observation was not any more the chosen one

- The average intensity $\langle F(t) \rangle$ suddenly changed, perhaps due to the passage of a vesicle at the point of observation

\[G(\tau) = \frac{\langle \delta F(t) \delta F(t + \tau) \rangle}{\langle F(t) \rangle^2} \]

\[\delta F(t) = F(t) - \langle F(t) \rangle \]

- Bleaching of the immobile fraction occurred, causing a large deviation of the apparent correlation curve
Approaches to FCS in cells

• Manufacturers (Zeiss and ISS) built instruments for solution experiments. They were asked by many researchers to be able to directly perform FCS measurements in cells.

• Zeiss produced the Confocor 2 and Confocor 3, in which it was possible to alternate the capability of performing FCS at one point with the confocal unit.

• ISS produced an instrument to raster scan the sample in a “conventional FCS unit”, thereby joining imaging with FCS, but always at two separate times.

At the LFD we took a radically different approach*: the scanning FCS principle

Fluctuation analysis: single point and scanning

Single point FCS

Time 0 1 2 4 8
Correlation 1.0 1.0 0.9 0.6 0.3

Correlation function $G(\tau)$

Lag time $\tau (s)$

$\tau_D = \frac{\omega_0^2}{4D}$

Scanning FCS and RICS

Shift (pixel) 0 1 2 4 8
Correlation 1.00 1.00 0.66 0.14 0.00
The principle of scanning FCS

If we can move the point at which we acquire FCS data fast enough to other points and then return to the original point “before” the particle has left the volume of excitation, then we can “multiplex the time” and collect FCS data at several points simultaneously!
The fastest way to scan several points and then return to the original point is to perform a circular orbit using the scanner galvo.

The x- and y-galvos are driven by 2 sine waves shifted by 90 degrees, thereby obtaining a projected orbit on the sample.

One orbit could be performed in less than 1 ms using conventional galvo drivers and in microseconds using acousto-optical beam deflectors.
Timing in scanning FCS

What is the maximum time required for an orbit so that we will not miss the “fastest” diffusion process in a cell?

EGFP diffuses in the cell with an apparent diffusion coefficient of approximately $20 \mu m^2/s$. The transit across the laser beam (assuming a w_0 of 0.35 μm) is about 1.5 ms! (formula used: time=$w_0^2/4D$)

Therefore **0.5 to 1 ms** per orbit should catch the GFP diffusing in a cell. Faster diffusing molecules will be partially missed.

Instead, faster blinking and other fast intramolecular processes will not be missed!! (why?)
Normalized autocorrelation curve of EGFP in solution (•), EGFP in the cell (○), AK1-EGFP in the cell (●), AK1b-EGFP in the cytoplasm of the cell (●).
Light is collected along the orbit, generally at 64 or 128 points. If the orbit period is 1 ms, the dwell time at each point is about 16 μs (64 points) or 8 μs (128 points).

The separation between the points depends on the orbit radius:

For an orbit radius of 5 μm, the length of the orbit is about 32 μm. At 64 points per orbit the average distance is about 0.5 μm (0.25 μm at 128 points).

Why is the distance between points important?
If the orbit radius is larger than 5 μm, the points are separated by more than the width of the PSF (assuming 64 points per orbit: $2\pi R/64 \sim 500\text{nm}$).

Setting the conditions of the instrument for **no-overlap** limits the capability of obtaining spatial correlations along the orbit.
The data stream is presented as a “carpet” in which the horizontal coordinate represents data along the orbit and the vertical coordinate represents data at successive orbits (hyperspace).
How do we proceed to determine the **diffusion** of particles, the **number** of particles and their **brightness**?

- Select a column of the carpet. It is a time sequence at a specific point of the orbit!
- Perform autocorrelation operation along a column
- What are we obtaining?
- What is the sampling time along one of these columns?
- What is the dwell time along one of these columns?

Intensity along a column

Perform the autocorrelation operation

Recovered value for $D=0.1 \, \mu\text{m}^2/\text{s} (= \text{to the value input in the simulation!})$
Carpet analysis

Every column should be equivalent for a homogeneous sample, so that we can calculate the ACF for every column and then fit all the columns either globally or individually.

The G(0) changes from line to line, because the statistics is poor, but the D is pretty constant at the expected value of D=0.1\(\mu\text{m}^2/\text{s}\).
Global correlation function: the periodicity is due to the scanning period which is 1 ms.

Clearly, we are sampling fast with respect to the relaxation due to diffusion. (How can we see that this is the case?)
Global correlation function for a solution experiment

D = 10 μm²/s

R = 5 μm

We are not scanning fast enough!

No spatial correlations!
What about the PCH analysis, can that be done?
Since we have a sequence, we can plot the histogram first globally and then individually for each column.

Global histogram (more statistics!)

Single histogram at one column
Why scanning FCS in a homogeneous sample?

Is there any advantage to perform scanning FCS instead of single point FCS for a solution sample?

A major issue in FCS is that we need the volume of the PSF to calculate the diffusion coefficient.

In scanning FCS we know the distance between points along the orbit. We can calculate the time for a molecule to diffuse between the two volumes.

What about cross-correlation between columns?
Scanning FCS in cells (some surprises!)

Example of scanning at an adhesion

- 64 points sampled along the orbit
- Period of scanning is 1 ms,
- Radius of scanning is 2 μm
- Distance between pixels is about 0.2 μm

The “real world”
What do we do with the changes in intensity?
There is some fast initial bleaching followed up by a slow increase in intensity.

What are the questions?
- What is the apparent “diffusion” coefficient of paxillin?
- Is the diffusion coefficient homogeneous?
- Is paxillin monomeric (i.e., what is the brightness)?
- What is the number of particles in the different parts of the adhesion?
Welcome to the real world!

Scanning a moving target: GUV. How to determine the diffusion in the membrane?

Detrend? Centering?

Data from Pierre Moens (2007)
Scanning FCS in cells: heterogeneity along adhesions

Single point FCS depicts two-species

<table>
<thead>
<tr>
<th>Diffusion (μm²/s)</th>
<th>Fractional Contribution Cytosol (%)</th>
<th>Fractional Contribution Adhesions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 Monomers</td>
<td>19.6</td>
<td>61</td>
</tr>
<tr>
<td>D2 Aggregates?</td>
<td>1.43</td>
<td>39</td>
</tr>
</tbody>
</table>

What are these diffusion rates due to?

1. Differences in cell viscosity
2. Paxillin complexed to other proteins
3. Large aggregates of paxillin

Scanning FCS in cells: heterogeneity along adhesions

Data were sampled at 64kHz (1ms/orbit, 64 points per orbit).

Disassembling

Assembling

FCS and Scanning FCS results:

- Paxillin moves differently at an adhesion with respect to the cytosol
- Adhesions are heterogeneous
- At the assembling side of the adhesion the fluctuation dynamics is faster and the number of molecules is larger than in stable cellular adhesions

Are the adhesions assembling and disassembling in synchrony?
Can we map out protein dynamics in a larger area?

We need a method where we can analyze the entire cell:
THE RICS APPROACH
Described so far

- Circular versus line scanning
- Line scanning can be performed with any confocal microscope
- Line scanning is not as fast as circular scanning (few ms versus a fraction of a ms)
- For homogeneous samples, is there any advantage in performing scanning-FCS (either circular or line) with respect to single point FCS??
- Filtering operations on the data and integrity of the original statistics
Observations

• Even in the “simplest” implementation, FCS in cells requires precautions in data analysis and interpretation

• The user must set up the instrument parameters (line period, dwell time, etc) for the particular experiment

• The software for data analysis must offer a series of tools to the user for data filtering, analysis and presentation. It is not enough to collect line scanning data!

• Maps of diffusion coefficients, number of particles and brightness can be obtained if we can deal with slowly varying fluctuations
What is next?

This was an “introduction” to scanning FCS

We discussed the analysis of the carpet columns as individual time traces at separate points

We have not considered the correlation between adjacent columns or between distant columns

We need to develop new concepts and mathematical tools to account for these spatial correlations

As we understand the scanning experiment we discover a new world about fluctuation methods that was not possible to explore with single point FCS
What is next?

Spatial Resolution

RICS

STICS - iIMSD

Pair Correlation